Search results for "Furstenberg sets"
showing 2 items of 2 documents
Additive properties of fractal sets on the parabola
2023
Let $0 \leq s \leq 1$, and let $\mathbb{P} := \{(t,t^{2}) \in \mathbb{R}^{2} : t \in [-1,1]\}$. If $K \subset \mathbb{P}$ is a closed set with $\dim_{\mathrm{H}} K = s$, it is not hard to see that $\dim_{\mathrm{H}} (K + K) \geq 2s$. The main corollary of the paper states that if $0 0$. This information is deduced from an $L^{6}$ bound for the Fourier transforms of Frostman measures on $\mathbb{P}$. If $0 0$, then there exists $\epsilon = \epsilon(s) > 0$ such that $$ \|\hat{\mu}\|_{L^{6}(B(R))}^{6} \leq R^{2 - (2s + \epsilon)} $$ for all sufficiently large $R \geq 1$. The proof is based on a reduction to a $\delta$-discretised point-circle incidence problem, and eventually to the $(s,2s)$-…
Integrability of orthogonal projections, and applications to Furstenberg sets
2022
Let $\mathcal{G}(d,n)$ be the Grassmannian manifold of $n$-dimensional subspaces of $\mathbb{R}^{d}$, and let $\pi_{V} \colon \mathbb{R}^{d} \to V$ be the orthogonal projection. We prove that if $\mu$ is a compactly supported Radon measure on $\mathbb{R}^{d}$ satisfying the $s$-dimensional Frostman condition $\mu(B(x,r)) \leq Cr^{s}$ for all $x \in \mathbb{R}^{d}$ and $r > 0$, then $$\int_{\mathcal{G}(d,n)} \|\pi_{V}\mu\|_{L^{p}(V)}^{p} \, d\gamma_{d,n}(V) \tfrac{1}{2}$ and $t \geq 1 + \epsilon$ for a small absolute constant $\epsilon > 0$. We also prove a higher dimensional analogue of this estimate for codimension-1 Furstenberg sets in $\mathbb{R}^{d}$. As another corollary of our method,…